SparkStreaming与Kafka整合遇到的问题及解决方案

2017/7/20 11:45:03 人评论 次浏览 分类:大数据

前言

最近工作中是做日志分析的平台,采用了sparkstreaming+kafka,采用kafka主要是看中了它对大数据量处理的高性能,处理日志类应用再好不过了,采用了sparkstreaming的流处理框架 主要是考虑到它本身是基于spark核心的,以后的批处理可以一站式服务,并且可以提供准实时服务到elasticsearch中,可以实现准实时定位系统日志。

实现

Spark-Streaming获取kafka数据的两种方式-Receiver与Direct的方式。

一. 基于Receiver方式

这种方式使用Receiver来获取数据。Receiver是使用Kafka的高层次Consumer API来实现的。receiver从Kafka中获取的数据都是存储在Spark Executor的内存中的,然后Spark Streaming启动的job会去处理那些数据。代码如下:

    SparkConf sparkConf = new SparkConf().setAppName("log-etl").setMaster("local[4]");
    JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(2000));
    int numThreads = Integer.parseInt("4");
    Map<String, Integer> topicMap = new HashMap<String, Integer>();
    topicMap.put("group-45", numThreads);
     //接收的参数分别是JavaStreamingConetxt,zookeeper连接地址,groupId,kafak的topic 
    JavaPairReceiverInputDStream<String, String> messages =
    KafkaUtils.createStream(jssc, "172.16.206.27:2181,172.16.206.28:2181,172.16.206.29:2181", "1", topicMap);

刚开始的时候系统正常运行,没有发现问题,但是如果系统异常重新启动sparkstreaming程序后,发现程序会重复处理已经处理过的数据,这种基于receiver的方式,是使用Kafka的高阶API来在ZooKeeper中保存消费过的offset的。这是消费Kafka数据的传统方式。这种方式配合着WAL机制可以保证数据零丢失的高可靠性,但是却无法保证数据被处理一次且仅一次,可能会处理两次。因为Spark和ZooKeeper之间可能是不同步的。官方现在也已经不推荐这种整合方式,官网相关地址 http://spark.apache.org/docs/latest/streaming-kafka-integration.html ,下面我们使用官网推荐的第二种方式kafkaUtils的createDirectStream()方式。

二.基于Direct的方式

这种新的不基于Receiver的直接方式,是在Spark 1.3中引入的,从而能够确保更加健壮的机制。替代掉使用Receiver来接收数据后,这种方式会周期性地查询Kafka,来获得每个topic+partition的最新的offset,从而定义每个batch的offset的范围。当处理数据的job启动时,就会使用Kafka的简单consumer api来获取Kafka指定offset范围的数据。

代码如下:

SparkConf sparkConf = new SparkConf().setAppName("log-etl");
JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, Durations.seconds(2));

HashSet<String> topicsSet = new HashSet<String>(Arrays.asList(topics.split(",")));
HashMap<String, String> kafkaParams = new HashMap<String, String>();
kafkaParams.put("metadata.broker.list", brokers);
// Create direct kafka stream with brokers and topics
JavaPairInputDStream<String, String> messages = KafkaUtils.createDirectStream(
    jssc,
    String.class,
    String.class,
    StringDecoder.class,
    StringDecoder.class,
    kafkaParams,
    topicsSet
);

这种direct方式的优点如下:

1.简化并行读取:如果要读取多个partition,不需要创建多个输入DStream然后对它们进行union操作。Spark会创建跟Kafka partition一样多的RDD partition,并且会并行从Kafka中读取数据。所以在Kafka partition和RDD partition之间,有一个一对一的映射关系。

2.一次且仅一次的事务机制:基于receiver的方式,在spark和zk中通信,很有可能导致数据的不一致。

3.高效率:在receiver的情况下,如果要保证数据的不丢失,需要开启wal机制,这种方式下,为、数据实际上被复制了两份,一份在kafka自身的副本中,另外一份要复制到wal中, direct方式下是不需要副本的。

三.基于Direct方式丢失消息的问题

貌似这种方式很完美,但是还是有问题的,当业务需要重启sparkstreaming程序的时候,业务日志依然会打入到kafka中,当job重启后只能从最新的offset开始消费消息,造成重启过程中的消息丢失。kafka中的offset如下图(使用kafkaManager实时监控队列中的消息):

 

当停止业务日志的接受后,先重启spark程序,但是发现job并没有将先前打入到kafka中的数据消费掉。这是因为消息没有经过zk,topic的offset也就没有保存

四.解决消息丢失的处理方案

一般有两种方式处理这种问题,可以先spark streaming 保存offset,使用spark checkpoint机制,第二种是程序中自己实现保存offset逻辑,我比较喜欢第二种方式,以为这种方式可控,所有主动权都在自己手中。

先看下大体流程图,

SparkConf sparkConf = new SparkConf().setMaster("local[2]").setAppName("log-etl");
 Set<String> topicSet = new HashSet<String>();
        topicSet.add("group-45");
        kafkaParam.put("metadata.broker.list", "172.16.206.17:9092,172.16.206.31:9092,172.16.206.32:9092");
        kafkaParam.put("group.id", "simple1");

        // transform java Map to scala immutable.map
        scala.collection.mutable.Map<String, String> testMap = JavaConversions.mapAsScalaMap(kafkaParam);
        scala.collection.immutable.Map<String, String> scalaKafkaParam =
                testMap.toMap(new Predef.$less$colon$less<Tuple2<String, String>, Tuple2<String, String>>() {
                    public Tuple2<String, String> apply(Tuple2<String, String> v1) {
                        return v1;
                    }
                });

        // init KafkaCluster
        kafkaCluster = new KafkaCluster(scalaKafkaParam);

        scala.collection.mutable.Set<String> mutableTopics = JavaConversions.asScalaSet(topicSet);
        immutableTopics = mutableTopics.toSet();
        scala.collection.immutable.Set<TopicAndPartition> topicAndPartitionSet2 = kafkaCluster.getPartitions(immutableTopics).right().get();

        // kafka direct stream 初始化时使用的offset数据
        Map<TopicAndPartition, Long> consumerOffsetsLong = new HashMap<TopicAndPartition, Long>();

        // 没有保存offset时(该group首次消费时), 各个partition offset 默认为0
        if (kafkaCluster.getConsumerOffsets(kafkaParam.get("group.id"), topicAndPartitionSet2).isLeft()) {

            System.out.println(kafkaCluster.getConsumerOffsets(kafkaParam.get("group.id"), topicAndPartitionSet2).left().get());

            Set<TopicAndPartition> topicAndPartitionSet1 = JavaConversions.setAsJavaSet((scala.collection.immutable.Set)topicAndPartitionSet2);

            for (TopicAndPartition topicAndPartition : topicAndPartitionSet1) {
                consumerOffsetsLong.put(topicAndPartition, 0L);
            }

        }
        // offset已存在, 使用保存的offset
        else {

            scala.collection.immutable.Map<TopicAndPartition, Object> consumerOffsetsTemp = kafkaCluster.getConsumerOffsets("simple1", topicAndPartitionSet2).right().get();

            Map<TopicAndPartition, Object> consumerOffsets = JavaConversions.mapAsJavaMap((scala.collection.immutable.Map)consumerOffsetsTemp);

            Set<TopicAndPartition> topicAndPartitionSet1 = JavaConversions.setAsJavaSet((scala.collection.immutable.Set)topicAndPartitionSet2);

            for (TopicAndPartition topicAndPartition : topicAndPartitionSet1) {
                Long offset = (Long)consumerOffsets.get(topicAndPartition);
                consumerOffsetsLong.put(topicAndPartition, offset);
            }

        }

        JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(5000));
        kafkaParamBroadcast = jssc.sparkContext().broadcast(kafkaParam);

        // create direct stream
        JavaInputDStream<String> message = KafkaUtils.createDirectStream(
                jssc,
                String.class,
                String.class,
                StringDecoder.class,
                StringDecoder.class,
                String.class,
                kafkaParam,
                consumerOffsetsLong,
                new Function<MessageAndMetadata<String, String>, String>() {
                    public String call(MessageAndMetadata<String, String> v1) throws Exception {
                        System.out.println("接收到的数据《《==="+v1.message());
                        return v1.message();
                    }
                }
        );

        // 得到rdd各个分区对应的offset, 并保存在offsetRanges中
        final AtomicReference<OffsetRange[]> offsetRanges = new AtomicReference<OffsetRange[]>();

        JavaDStream<String> javaDStream = message.transform(new Function<JavaRDD<String>, JavaRDD<String>>() {
            public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {
                OffsetRange[] offsets = ((HasOffsetRanges) rdd.rdd()).offsetRanges();
                offsetRanges.set(offsets);
                return rdd;
            }
        });

        // output
        javaDStream.foreachRDD(new Function<JavaRDD<String>, Void>() {

            public Void call(JavaRDD<String> v1) throws Exception {
                if (v1.isEmpty()) return null;

                List<String> list = v1.collect();
                for(String s:list){
                    System.out.println("数据==="+s);
                }

                for (OffsetRange o : offsetRanges.get()) {

                    // 封装topic.partition 与 offset对应关系 java Map
                    TopicAndPartition topicAndPartition = new TopicAndPartition(o.topic(), o.partition());
                    Map<TopicAndPartition, Object> topicAndPartitionObjectMap = new HashMap<TopicAndPartition, Object>();
                    topicAndPartitionObjectMap.put(topicAndPartition, o.untilOffset());

                    // 转换java map to scala immutable.map
                    scala.collection.mutable.Map<TopicAndPartition, Object> testMap =
                            JavaConversions.mapAsScalaMap(topicAndPartitionObjectMap);
                    scala.collection.immutable.Map<TopicAndPartition, Object> scalatopicAndPartitionObjectMap =
                            testMap.toMap(new Predef.$less$colon$less<Tuple2<TopicAndPartition, Object>, Tuple2<TopicAndPartition, Object>>() {
                                public Tuple2<TopicAndPartition, Object> apply(Tuple2<TopicAndPartition, Object> v1) {
                                    return v1;
                                }
                            });

                    // 更新offset到kafkaCluster
                    kafkaCluster.setConsumerOffsets(kafkaParamBroadcast.getValue().get("group.id"), scalatopicAndPartitionObjectMap);
                       System.out.println("原数据====》"+o.topic() + " " + o.partition() + " " + o.fromOffset() + " " + o.untilOffset()
                    );
                }
                return null;
            }
        });

        jssc.start();
        jssc.awaitTermination();
    }

基本使用这种方式就可以解决数据丢失的问题。

文章来源:https://my.oschina.net/u/1792341/blog/1341327

相关知识

  • spark极简入门

    1.windows上下载安装sbt 去sbt官网下载 sbt包,解压到指定目录,不需要安装。记得配置环境变量。 新建 SBT_HOME ,值是sbt包的解压路径,比如C:\Users\***\Tools\sbt-0.13.15\sbt(建议不要放在C盘) 并在path 中添加 %SBT_HOME%\bin 查看是否成功,命令行输入: sbt sbtVer…

    2017/7/20 11:45:03
  • Redis精华

    Redis的复制功能是完全建立在之前我们讨论过的基于内存快照的持久化策略基础上的,也就是说无论你的持久化策略选择的是什么,只要用到了redis的复制功能,就一定会有内存快照发生,那么首先要注意你的系统内存容量规划,原因可以参考我上一篇文章中提到的Redis磁盘IO问题。R…

    2017/7/20 11:45:03
  • 快速搭建 ELK + OpenWAF 环境

    摘要: OpenWAF是第一个全方位开源的Web应用防护系统; ELK 是比较火的开源日志分析系统; 本节主要介绍,ELK 的 docker 部署及与 OpenWAF 的结合 OpenWAF简介 OpenWAF是第一个全方位开源的Web应用防护系统(WAF),他基于nginx_lua API分析HTTP请求信息。OpenWAF由行为分析引擎…

    2017/7/20 11:45:03
  • 魔盒——日拱一卒,功不唐捐把

    郑昀 创建于2017/6/29 最后更新于2017/6/30关键词:大数据,Spark,SparkSQL,HBase,HDFS,工作流,任务,Flow,Job,监控报警提纲:为什么要大数据协作?什么是愿景?我们的DataCube工作流什么样?DataCube 是数据中心刘奎组推出的大数据协作平台。从2016年3月29日我提出数…

    2017/7/20 11:45:03

共有访客发表了评论 网友评论

验证码: 看不清楚?